Establishment of a positive-readout reporter system for siRNAs
نویسندگان
چکیده
The use of small interfering RNA molecules for therapeutic applications requires development of improved delivery systems, a process that would be facilitated by a non-invasive positive-readout mouse model for studying siRNA pharmacodynamics. Positive readout would yield better signal/noise ratios than existing negative-readout systems. We have engineered a positive-readout luciferase reporter system, activated by successful delivery of siRNA targeting the lac repressor. Co-transfection of a plasmid expressing lac repressor and a plasmid expressing firefly luciferase under the control of an RSV promoter, containing two lac operator sites, resulted in 5.7-fold lower luciferase activity than luciferase-encoding plasmid alone. Inhibition was reversed following addition of synthetic inducer, IPTG, which elevated luciferase expression to normal levels and confirmed functionality of the lac operon. Delivery of 1nM siRNA targeting lac repressor to repressor/reporter co-transfected cells was sufficient to fully restore luciferase expression to levels observed in the absence of repressor. Maximum expression was observed after 48hr, with a rapid decrease thereafter due to the short half life of luciferase. The luciferase positive-readout reporter system is therefore a dynamic indicator of successful RNAi delivery in vitro and could be adapted to generate a transgenic mouse capable of reporting RNAi activity non-invasively in vivo.
منابع مشابه
مهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19
Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells. Ai...
متن کاملClosed-Loop Compensation of the Quadrature Error in MEMS Vibratory Gyroscopes
In this paper, a simple but effective method for compensation of the quadrature error in MEMS vibratory gyroscope is provided. The proposed method does not require any change in the sensor structure, or additional circuit in the feedback path. The mathematical relations of the proposed feedback readout system were analyzed and the proposed solution assures good rejection capabilities. Based on ...
متن کاملDevelopment of therapeutic siRNAs for pachyonychia congenita.
Pachyonychia congenita (PC) is an autosomal-dominant keratin disorder where the most painful, debilitating aspect is plantar keratoderma. PC is caused by mutations in one of four keratin genes; however, most patients carry K6a mutations. Knockout mouse studies suggest that ablation of one of the several K6 genes can be tolerated owing to compensatory expression of the others. Here, we have deve...
متن کاملA novel medium-throughput biological assay system for HTLV-1 infectivity and drug discovery
Objective(s): Here, a reporter cell line containing two reporter vectors were developed, in order to monitor the Human T-Lymphotropic Virus type1(HTLV-1) infectivity and the cell viability simultaneously. Materials and Methods: The reporter cell line was constructed by stably transfected baby hamster's kidney cell line (BHK-21), with the genomes expressing two different reporters in separate pl...
متن کاملA New Reporter Gene Technology: Opportunities and Perspectives
The paper summarizes the current status of the reporter gene technology and their basics. Reporter gene technology is widely used to monitor cellular events associated with gene expression and signal transduction. Based upon the splicing of transcriptional control elements to a variety of reporter genes, it “reports” the effects of a cascade of signaling events on gene expression inside cells. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2009